Противоречия принцип - Definition. Was ist Противоречия принцип
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Противоречия принцип - definition

Принцип Даламбера; Д’Аламбера принцип; Д'Аламбера принцип; Принцип Д'Аламбера; Принцип Д’Аламбера

Противоречия принцип      

закон отрицания противоречия, закон непротиворечия, принцип запрещения противоречия, один из основных общелогических принципов, согласно которому никакое Противоречие не может быть "допустимо" ("принято") - ни как формально-логический признак какого-либо "текста" (утверждения, рассуждения или целой теории), ни как объективная характеристика той реальности, описанием которой является, быть может, данный текст. Исторически более ранним был именно второй, "онтологический", аспект П. п.; восходя к софистам (См. Софисты) и будучи известным ещё Сократу (и часто им используемый, согласно Платону), этот принцип получает у Аристотеля (См. Аристотель) следующую формулировку: "Невозможно, чтобы одно и то же вместе было и не было присуще одному и тому же и в одном и том же смысле" ("Метафизика", М. - Л., 1934). Но у того же Аристотеля П. п. фигурирует и как логический (точнее, методологический, или, в современной терминологии, относящийся к металогике (См. Металогика)) тезис: каждое слово (а тем самым и каждая фраза, каждое утверждение) должно иметь - во всяком случае, в каждом конкретном контексте - единственное значение. Вполне современная формулировка П. п. встречается у Г. В. Лейбница ("Новые опыты", М. - Л., 1936): одно и то же высказывание не может быть одновременно истинным и ложным. Поэтому, если в результате некоторого рассуждения приходят к противоречию, это свидетельствует либо о несовместимости (противоречивости) посылок этого рассуждения, либо о допущенных в нём самом ошибках, либо, наконец, о непригодности, неприемлемости той логической системы, в рамках которой это рассуждение проводится. Наиболее ясную и простую формулировку и объяснение П. п. получает в математической логике (См. Логика): в исчислении высказываний (См. Исчисление высказываний) (или на содержательном уровне в логике высказываний) он принимает вид доказуемой (тождественно-истинной) формулы ⌉(А&⌉ А) (здесь А - Пропозициональная переменная, могущая восприниматься как обозначение произвольного высказывания), а на методологическом уровне - как утверждение о доказуемости (или истинности, тавтологичности) этой формулы. В исчислении предикатов (См. Исчисление предикатов) П. п. получает бесконечное множество формулировок в зависимости от числа аргументных мест, используемых в его формулировке предикатов; например, для одноместных предикатов: ∀x⌉ (A (x)&A (x)) (никакой предмет не может одновременно обладать и не обладать одним и тем же свойством), для двуместных предикатов: ∀xy⌉ (B (x, y)&B (x, y)) (никакие два предмета не могут одновременно находиться и не находиться в одном и том же отношении). Эти чисто логические формулировки П. п. имеют в то же время очевидные "онтологические" (относящиеся к реальной действительности) интерпретации. Мотивировка всех этих формулировок П. п. очень проста: в подавляющем большинстве логических и логико-математических исчислений выводим (доказуем) принцип А&А В (из противоречия следует всё, что угодно) или хотя бы более слабый принцип А&А В (из противоречия следует отрицание любого утверждения). Поэтому логические системы, в которых нарушается П. п., помимо своей очевидной неприемлемости с интуитивной точки зрения (несоответствие с реальной действительностью, по отношению к которой "онтологическая" формулировка П. п., очевидно, верна), не имеют к тому же никакой логической ценности: наличие противоречий (антиномий (См. Антиномия), Парадоксов) автоматически приводит к тому, что в такой системе доказуемо (или хотя бы опровержимо) любое формулируемое на её языке высказывание. Поэтому Непротиворечивость (т. е. справедливость П. п.) логические (и вообще научные) теории является столь важным и актуальным критерием её пригодности, а сам П. п. сохранил своё непреходящее значение.

Лит.: Колмогоров А. Н., О принципе tertium non datur, "Математический сборник", 1925, т. 32, в. 4; Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, гл. Ill; Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960, § 17 и 32.

Д'Аламбера принцип         

один из основных принципов динамики (См. Динамика), согласно которому, если к заданным (активным) силам, действующим на точки механической системы, и реакциям наложенных связей присоединить силы инерции, то получится уравновешенная система сил. Назван по имени франц. Учёного Ж. Д'Аламбера. Из Д. п. следует, что для каждой i-той точки системы Fi + Ni + Ji = 0, где Fi - действующая на эту точку активная сила, Ni - реакция наложенной на точку связи (см. Связи механические), Ji - сила инерции, численно равная произведению массы mi точки на её ускорение wi (Ji = miwi) и направленная противоположно этому ускорению. Д. п. позволяет применить к решению задач динамики более простые методы статики (См. Статика), поэтому им широко пользуются в инженерной практике. Особенно удобно им пользоваться для определения реакций связей в случаях, когда закон происходящего движения известен или найден из решения соответствующих уравнений.

С. М. Торг.

Принцип д’Аламбера         
Принцип д’Аламбера (принцип кинетостатики) или (принцип Германа — Эйлера — Д’Аламбе́ра) — в механике: один из основных принципов динамики, согласно которому, если к заданным (активным) силам, действующим на точки механической системы, и реакциям наложенных связей присоединить силы инерции, то получится уравновешенная система сил — С. 376..

Wikipedia

Принцип д’Аламбера

Принцип д’Аламбера (принцип кинетостатики) или (принцип Германа — Эйлера — Д’Аламбе́ра) — в механике: один из основных принципов динамики, согласно которому, если к заданным (активным) силам, действующим на точки механической системы, и реакциям наложенных связей присоединить силы инерции, то получится уравновешенная система сил.

Назван по имени французского учёного Жана Д’Аламбера, который впервые сформулировал рассматриваемый принцип в сочинении «Динамика» (1743).

Принцип Даламбера (определение): если к действующей на тело активной силе и реакции связи приложить дополнительную силу инерции, то тело будет находиться в равновесии (сумма всех сил, действующих в системе, дополненная главным вектором инерции, равна нулю). Согласно данному принципу, для каждой i-той точки системы верно равенство F i + N i + J i = 0 {\displaystyle F_{i}+N_{i}+J_{i}=0} , где F i {\displaystyle F_{i}}  — действующая на эту точку активная сила, N i {\displaystyle N_{i}}  — реакция наложенной на точку связи, J i {\displaystyle J_{i}}  — сила инерции, численно равная произведению массы m i {\displaystyle m_{i}} точки на её ускорение a i {\displaystyle a_{i}} и направленная противоположно этому ускорению ( J i = m i a i {\displaystyle J_{i}=-m_{i}a_{i}} ). Фактически, речь идёт о выполняемом отдельно для каждой из рассматриваемых материальных точек переносе слагаемого ma справа налево во втором законе Ньютона ( F = m a F m a = 0 {\displaystyle F=ma\Rightarrow F-ma=0} ) и нареканию этого слагаемого Д’Аламберовой силой инерции.

Для МС: При движении материальной системы относительно инерциальной системы отсчета под действием активных и пассивных сил, эти пассивные силы, в каждый момент времени таковы, как если бы система находилась в равновесии, под действием этих активных сил, пассивных сил и сил равных "силам инерции приложенным к каждой точке материальной системы.

Принцип Д’Аламбера позволяет применить к решению задач динамики более простые методы статики, поэтому им широко пользуются в инженерной практике; на данном принципе основан т. н. метод кинетостатики. Особенно удобно им пользоваться для определения реакций связей в случаях, когда закон происходящего движения известен или найден из решения соответствующих уравнений.

Разновидностью принципа Д’Аламбера (причём найденной несколько раньше) является принцип Германа — Эйлера.

Was ist Противор<font color="red">е</font>чия пр<font color="red">и</font>нцип - Definition